# Size-Specific, Dissociative Activation of Carbon Dioxide by Cobalt Cluster Anions

Akimaro Yanagimachi,<sup>†</sup> Kiichirou Koyasu,<sup>†,‡</sup> David Yubero Valdivielso,<sup>§</sup> Sandy Gewinner,<sup>||</sup> Wieland Schöllkopf,<sup>||</sup> André Fielicke,<sup>\*,§</sup> and Tatsuya Tsukuda<sup>\*,†,‡</sup>

<sup>†</sup>Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan <sup>‡</sup>Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan <sup>§</sup>Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin, Germany <sup>||</sup>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany

**ABSTRACT:** The reaction of cobalt cluster anions  $\operatorname{Co}_n^-(3 \le n \le 17)$  with  $\operatorname{CO}_2$  was studied experimentally and theoretically to explore the size-specific activation mode of  $\operatorname{CO}_2$  by  $\operatorname{Co}_n^-$ . Mass spectrometric measurements revealed that the reactivity depends strongly on cluster size: the reactivity emerges abruptly at n = 7, peaks at n = 8-10, and then gradually decreases with increasing n. Infrared multiple photon dissociation spectra of  $\operatorname{Co}_n\operatorname{CO}_2^-$  exhibit a single peak at  $\sim 1870 \text{ cm}^{-1}$ , similarly to the previously reported spectra of  $\operatorname{Co}_n\operatorname{CO}^-$ . Density functional theory calculations for  $\operatorname{Co}_7\operatorname{CO}_2^-$  as an example revealed that the dissociative adsorption of  $\operatorname{CO}_2$  into CO and O is energetically more favorable than nondissociative adsorption. The infrared spectra calculated for dissociated isomers  $\operatorname{Co}_7(\operatorname{CO})^-$  reproduced the experimental results, whereas those for nondissociated isomers  $\operatorname{Co}_7\operatorname{CO}_2^-$  did not.



Article

pubs.acs.org/JPCC

The photoelectron spectra of  $\text{Co}_n\text{CO}_2^-$  were shifted dramatically toward higher energies relative to those of  $\text{Co}_n^-$ , suggesting electron transfer from  $\text{Co}_n^-$  to the CO and O ligands. These results indicate that the CO<sub>2</sub> molecule adsorbs dissociatively on  $\text{Co}_n^-$ , in sharp contrast to its nondissociative adsorption onto the Co monomer anion.

## 1. INTRODUCTION

Emission control of carbon dioxide (CO<sub>2</sub>), recognized as the primary greenhouse gas, is a major challenge for realizing a sustainable society. A promising approach to this issue is the catalytic conversion of the chemically inert CO<sub>2</sub> molecule into useful, value-added compounds.<sup>1,2</sup> For example, a  $CO/CO_2/H_2$ mixture has been converted to methanol using heterogeneous copper catalysts,<sup>2,3</sup> and dimethyl carbonate was obtained from  $CO_2$  using base catalysts.<sup>3-5</sup> In these catalytic conversions,  $CO_2$ is activated by either dissociative or nondissociative adsorption. For example, the dissociation of  $CO_2$  into CO and O on catalysts is involved in methanation.<sup>6</sup> Three modes of nondissociative adsorption of  $CO_2$  have been reported: (1) bidentate ligation via the C–O bond in the reduction of  $CO_2$  to CO on (NHC)Cu(boryl);<sup>7,8</sup> (2) bidentate ligation via the two O atoms<sup>9</sup> in the hydrogenation of CO<sub>2</sub> on Ni(110);<sup>10</sup> and (3) monodentate ligation via the C atom in the fixation of CO<sub>2</sub> with epoxides catalyzed by Mg-Al mixed oxides.<sup>11</sup> Molecularly adsorbed CO2 is bent because of electron transfer from the catalysts to the  $\pi^*$  orbital of CO<sub>2</sub>.

Recently, to gain fundamental insight into the metal– $CO_2$  interactions, the structures of various anionic complexes  $[M(CO_2)_n]^-$  (M = Co, Ni, Cu, Ag, and Au) have been studied by infrared (IR) spectroscopy and photoelectron spectroscopy (PES) with the help of density functional theory (DFT) calculations.<sup>12–19</sup> The structural motifs of  $[M(CO_2)_n]^-$  vary significantly between noble metals (Cu, Ag, Au) and open-d-

shell metals (Co, Ni). Metalloformate-like complexes [M- $CO_2$ ]<sup>-</sup>, in which  $CO_2$  is bound to M via the C atom with typical energies of 0.2–0.4 eV, are formed as stable units for M = Cu, Ag, and Au.<sup>12–15,18</sup> The CO<sub>2</sub> ligand is reductively activated by partial electron transfer from M; the excess charge on  $CO_2$  is reduced in the order of Cu > Ag > Au, reflecting the electronegativity of the metal atom. In contrast, metalate complexes  $[CO_2MCO_2]^-$  in which a metal cation  $M^+$  is coordinated by two negatively charged CO<sub>2</sub> in a C-O bidentate fashion, are typically formed for M = Co, Ni.<sup>16,17</sup> A red-shift of the antisymmetric vibrational mode of CO<sub>2</sub> in  $[CO_2MCO_2]^-$  indicated a reductive activation of the CO<sub>2</sub> ligands. Although a theoretical calculation predicted that the dissociative addition is energetically more preferable, it is proposed that this process is hindered because of a high activation barrier.<sup>16,17</sup> The nondissociative activation of  $CO_2$ was also reported on a gas-phase Ni(I)-tetraazamacrocycle complex.<sup>20</sup>

Motivated by these reports, we study here the interaction of  $CO_2$  with metal clusters with a focus on how  $CO_2$  is activated. The binding mode of  $CO_2$  on metal clusters may be affected by their size-specific electronic and geometric structures. Co clusters were chosen as a target because Co-based catalysts have

```
Received:
April 29, 2016

Revised:
June 13, 2016

Published:
June 13, 2016
```

been used in syngas (H<sub>2</sub> and CO) production via the CO<sub>2</sub> reforming of methane.<sup>21</sup> The size-dependence of the reactivity of Co<sub>n</sub><sup>-</sup> to CO<sub>2</sub> was studied using mass spectrometry. The structures of the Co<sub>n</sub>CO<sub>2</sub><sup>-</sup> products were examined using infrared multiple photon dissociation spectroscopy (IRMPD), PES, and DFT calculations. The present study reveals that CO<sub>2</sub> is dissociatively adsorbed on Co<sub>n</sub><sup>-</sup> but not the Co atomic anion.<sup>16</sup>

## 2. METHODS

2.1. Experiments. Experimental apparatuses in Tokyo and Berlin were used. The apparatus in Tokyo is composed of four parts: a laser ablation cluster source, a reaction cell, a time-offlight (TOF) mass spectrometer, and a magnetic-bottle type TOF photoelectron spectrometer.<sup>22</sup> Before the experiment, all the stainless-steel pipes used for the carrier and reaction gases were baked at 100 °C under vacuum to remove water from their inner surfaces. The surface of the Co target rod was polished with sandpaper immediately before use. First, the second harmonic of a Nd:YAG laser (~10 mJ/pulse) was focused onto the Co rod (99.98%;  $\phi = 5 \text{ mm}$ ) that was rotating and translating under a pulsed helium carrier gas (99.999%) to generate Co cluster anions. The Co cluster anions were introduced into a reaction cell at room temperature by passing through a channel ( $\phi = 2.0$  mm; length = 25.5 mm). In the reaction cell, the clusters were allowed to react with CO<sub>2</sub> (>99.5 vol %). The anionic products were accelerated up to 2.00-4.25 keV in the TOF mass spectrometer with a typical mass resolution of 180 at  $m/z \sim 530$ . Mass spectra were acquired for 1000 laser shots at 10 Hz. Photoelectron spectra of the mass selected  $Co_n^-$  and  $Co_n CO_2^-$  were recorded by irradiating the third harmonic of a Nd:YAG laser (~0.2 mJ/ pulse) by accumulating 5000-20 000 laser shots. Photoelectron spectra of Co,,<sup>-</sup> were recorded after deceleration and calibrated using two peaks of the spectrum of  $Co_6^{-23-25}$  The resolution of the photoelectron spectrometer is <120 meV for electrons with a kinetic energy of 1.0 eV.

The apparatus in Berlin was used for infrared multiple photon dissociation (IRMPD) spectroscopy. The experiments were performed at the Fritz Haber Institut (FHI) in Berlin, Germany, using the FHI free electron laser (FHI FEL).<sup>26,27</sup> The experimental apparatus consists of a laser ablation cluster source, a reaction channel, and a reflectron TOF mass spectrometer and is connected to the FHI FEL beamline for the IRMPD experiment. A dual target laser ablation source with two identical Co target rods was used as a cluster source. Details of this source and its operation are given elsewhere.<sup>28</sup> CO2 gas was injected into a reaction channel at room temperature to form metal cluster complexes. Next, the anionic products were analyzed using the reflectron TOF mass spectrometer. Mass-specific IRMPD spectra were recorded by irradiating the cluster beam with IR laser light from the FEL before mass separation and analyzing the intensity changes of the mass peaks of CO<sub>2</sub> complexes and product ions.

**2.2. Theoretical Calculations.** DFT calculations were conducted to obtain optimized structures of  $Co_7^-$  and  $Co_7CO_2^-$  (see Section 3.3 for details). We used the B3LYP functional as well as the LANL2DZ basis set for C o and the 6-31++G(d) basis set for C and O. Frequency calculations were performed to confirm that each stationary point corresponds to a local minimum structure. The charges on  $Co_7$  and  $CO_2$  units were estimated by natural population analysis. A scaling factor of 0.980 was used for the calculated frequencies that gives, on

average, good agreement between the calculated frequencies for the free CO stretch and CO<sub>2</sub> antisymmetric stretch modes (2158 and 2362 cm<sup>-1</sup>) and the experimental values (2170 and 2349 cm<sup>-1</sup>), respectively. This suggests that the application of this scaling factor to the calculated frequencies of the ligands was reasonable. The obtained energies of the clusters were corrected by the vibrational zero-point energy. All calculations were performed using the Gaussian 09 package.<sup>29</sup>

## 3. RESULTS AND DISCUSSION

**3.1. Reaction of Co\_n^- and CO\_2.** Figure 1a shows a portion of the mass spectrum of the Co cluster anions before reaction



**Figure 1.** Mass spectra of  $Co_n^-$  (a) before and (b) after reaction with  $CO_2$  as obtained with the Tokyo apparatus.

with CO<sub>2</sub>. The Co<sub>n</sub><sup>-</sup> are found to be the dominant species. The mass peaks of oxidized species such as Co<sub>n</sub>O<sup>-</sup> and Co<sub>n</sub>O<sub>2</sub><sup>-</sup> were significantly suppressed by baking of the gas-supply pipes. The peak intensity of Co<sub>5</sub><sup>-</sup> shows a magic-number behavior consistent with a previous study.<sup>23,24</sup> After the reaction with CO<sub>2</sub> (Figure 1b), the peak intensities of Co<sub>n</sub><sup>-</sup> decrease, and peaks assigned to Co<sub>n</sub>CO<sub>2</sub><sup>-</sup> appear. At a higher CO<sub>2</sub> concentration, Co<sub>n</sub>(CO<sub>2</sub>)<sub>2</sub><sup>-</sup> was also formed.

The reaction of  $\text{Co}_n^-$  with  $\text{CO}_2$  leads to the formation of the adduct  $\text{Co}_n \text{CO}_2^-$  via eq 1

$$\operatorname{Co}_{n}^{-} + \operatorname{CO}_{2} \to \operatorname{Co}_{n} \operatorname{CO}_{2}^{-} \tag{1}$$

However, this reaction induces neither loss of Co atoms nor electron emission. The suppression of the fragmentation and electron emission can be understood from an energetics viewpoint: the bond dissociation energies of  $\text{Co}_{n-1}$ –Co (>1.45 eV for n = 3-20)<sup>30,31</sup> as well as the electron affinities (>1.6 eV for  $n \ge 3$ )<sup>23–25</sup> are larger than the adsorption energy of CO<sub>2</sub> on  $\text{Co}_n^-$  (<1.2 eV for n = 7, see Tables 1 and 2).

Because the concentration of  $CO_2$  ([ $CO_2$ ]) is much higher than that of  $Co_n^-$  and can be treated as a constant during the reaction, the rate constant for the reactions of  $Co_n^-$  ( $k_n$ ) was estimated by assuming pseudo-first order reaction kinetics:

$$\ln\left(\frac{[\mathrm{Co}_n^-]}{[\mathrm{Co}_n^-]_0}\right) = -k_n[\mathrm{CO}_2]t \tag{2}$$

where  $[Co_n^-]_0$  and  $[Co_n^-]$  indicate the concentrations of  $Co_n^-$  before and after the reaction, respectively, and *t* indicates the reaction time. The concentration of  $Co_n^-$  was determined from the peak area of  $Co_n^-$ . The rate constant  $k_n$  was normalized by that of the most reactive cluster  $k_8$ .

The Journal of Physical Chemistry C

$$\frac{k_n}{k_8} = \ln \left( \frac{\left[ \operatorname{Co}_n^- \right]_0}{\left[ \operatorname{Co}_n^- \right]} \frac{\left[ \operatorname{Co}_8^- \right]}{\left[ \operatorname{Co}_8^- \right]_0} \right)$$
(3)

Figure 2 shows the relative rate constant  $(k_n/k_8)$  as a function of the cluster size. Small Co<sub>n</sub><sup>-</sup> clusters  $(n \le 6)$  show almost no



Figure 2. Size dependence of the relative rate constant.

reactivity. The relative rate constant increases abruptly at n = 7, peaks around n = 8-10, and then decreases monotonically with increasing n. The decrease between n = 15 and 16 is greater than that between other neighboring sizes. Interestingly, the observed size dependence of the reactivity of CO<sub>2</sub> is similar to that found in the reactivity of CO toward Co<sub>n</sub><sup>-24,32,33</sup>.

Notably, we discovered that  $\text{Co}_n^-$  reacts with  $\text{CO}_2$  only when the cluster size is larger than or equal to 7. The size-specific reactivity of  $\text{Co}_n^-$  to CO has been explained in terms of an effective interaction between the molecular orbitals of CO and the d-orbitals of  $\text{Co}_n^{-.32,33}$  It is also well recognized that charge transfer from the metal surface to the antibonding orbital of CO<sub>2</sub> induces the chemisorption of CO<sub>2</sub> in a bent form.<sup>9,34,35</sup> These results suggest that the size-dependent reactivity observed here is related to the electronic structures of  $\text{Co}_n^-$ , although no obvious correlation with the size-dependent behavior of photoelectron spectra of  $\text{Co}_n^-$  was found.<sup>36</sup> Further study is needed to explain the size-specific reactivity of  $\text{Co}_n^-$ .

**3.2. Infrared Multiple Photon Dissociation Spectroscopy of Co\_nCO\_2^-.** To gain insight into the structures of  $CO_2$ adsorbed on  $Co_n^-$ , IRMPD spectra of  $Co_nCO_2^-$  were recorded. Figure 3a shows the IRMPD spectra of  $Co_nCO_2^-$  (n = 7-13) in the range of 1000-2000 cm<sup>-1</sup>. For all the sizes, a single absorption band is visible at ~1870 cm<sup>-1</sup>. The band positions found for  $Co_nCO_2^-$  are very similar to those of  $Co_nCO^-$  (ref 37) and show a similar, but weaker size-dependence (Figure 3b). The C-O stretching frequencies for  $Co_nCO^-$  increase with cluster size from 1860 (n = 7) to 1881 cm<sup>-1</sup> (n = 13): this trend has been explained by the effect of the cluster-sizedependent charge delocalization on the amount of  $\pi$ -backdonation to the CO ligand.<sup>37</sup> The strong similarities between the peak positions for  $Co_nCO_2^-$  and  $Co_nCO^-$  suggest that  $CO_2$ is dissociatively adsorbed on  $Co_n^-$  to form  $Co_n(CO)O^-$ .

Figure 4a shows the mass spectra of reaction products of  $Co_n^-$  and  $CO_2$  before and after IR irradiation at ~1870 cm<sup>-1</sup>. Upon IR irradiation, the intensities of the mass peaks of  $Co_nCO_2^-$  decrease, while those of the mass peaks of  $Co_n^-$  increase significantly. The signal intensities of bare  $Co_n^-$  clusters are unaffected by this photoirradiation. The clear identification of a CO stretching band (Figure 3a) excludes the possibility that the dissociation of a CO<sub>2</sub> ligand is induced by the IR excitation, as has been observed for the N<sub>2</sub>O ligand bound to Rh clusters.<sup>38,39</sup> The IR-induced fragmentation process of  $Co_nCO_2^-$  is expressed as follows:

Article



**Figure 3.** (a) Infrared multiple photon dissociation spectra of  $\text{Co}_n\text{CO}_2^-$  (n = 7-13). (b) The C–O stretching frequencies of  $\text{Co}_n\text{CO}^-$  (ref 37) and the peak positions for  $\text{Co}_n\text{CO}_2^-$  as a function of cluster size.

$$\operatorname{Co}_n(\operatorname{CO})\operatorname{O}^- \xrightarrow{\operatorname{IR}} \operatorname{Co}_n\operatorname{O}^- + \operatorname{CO}$$
 (4)

In this equation, the CO ligands act as a chromophore for the IR radiation. IR-induced fragmentation was analyzed in more detail by subtracting the mass spectrum taken after the IR irradiation from that before the radiation (Figure 4b). In addition to eq 4, we observed IR-induced fragmentation of larger clusters  $\text{Co}_n(\text{CO}_2)_m^-$  into  $\text{Co}_n\text{O}_m^-$  (m = 2-4). This observation suggests that all the CO<sub>2</sub> ligands on  $\text{Co}_n^-$  are adsorbed also dissociatively into CO and O.

**3.3. DFT Calculations of Co<sub>7</sub>CO<sub>2</sub><sup>-</sup>.** DFT calculations were conducted on  $\mathrm{Co_7\mathrm{CO_2}^-}$  because  $\mathrm{Co_7^-}$  is the smallest cluster that exhibits its activity. The purpose of this calculation is not to determine the global minimum structure but to confirm that  $CO_2$  is dissociated on  $Co_n^-$ . It is reported that the most stable isomer of neutral Co7 has a pentagonal bipyramidal<sup>40</sup> or capped octahedral (spin multiplicity of 16)<sup>31,41</sup> structure depending on the calculation methods used. Cationic Co7<sup>+</sup> has a capped octahedral structure with a spin multiplicity of 17.42 On the basis of these reports, we only considered pentagonal bipyramidal and capped octahedral structures for Co7-. Figure 5 shows the optimized structures and their relative stabilities for spin multiplicities of 13, 15, and 17. The structures are very similar regardless of the spin multiplicity, and the most stable spin multiplicity for both structures is 15. In the calculation of  $Co_7 CO_2^-$ , the spin multiplicity was fixed as 15 to reduce the computational cost. In addition, we conducted geometrical optimization starting with the pentagonal bipyramid structure because the number of possible adsorption structures can be minimized due to its higher symmetry; furthermore, the energy difference with the most stable capped octahedron is only 0.05 eV.



**Figure 4.** (a) Mass spectra of reaction products of  $Co_n^-$  and  $CO_2$  before (top) and after (bottom) IR irradiation at 1870 cm<sup>-1</sup>. (b) Difference mass spectrum before and after IR irradiation at 1870 cm<sup>-1</sup>.



Figure 5. Optimized structures of Co<sub>7</sub><sup>-</sup>.

First, structures of  $Co_7(CO)O^-$  in which  $CO_2$  is dissociated into the CO molecule and O atom on  $Co_7^-$  were studied systematically as follows. As shown in Scheme 1, the pentagonal



bipyramidal cluster provides five binding modes for the O atom and the CO molecule:  $\mu_1$  coordination on a single Co atom (**a** and **b**),  $\mu_2$  coordination between two Co atoms (**c** and **d**), and a  $\mu_3$  coordination among three Co atoms (**e**). We first surveyed the most energetically preferable binding sites of the O atom and CO molecule on Co<sub>7</sub><sup>-</sup> individually.

For  $Co_7O^-$ , it was found that the O atom prefers adsorption onto site **e**. The adsorption energy (AE) and natural bond

orbital (NBO) charge ( $\Delta Q$ ) of the O atom were -4.94 eV and -1.26 e, respectively. For Co<sub>7</sub>CO<sup>-</sup>, it was found that CO prefers adsorption onto site **a**. The AE and  $\Delta Q$  values of the CO ligand were -1.22 eV and -0.06 e, respectively. Finally, we optimized the structures of Co<sub>7</sub>(CO)O<sup>-</sup> by changing the relative position of O on site **e** and CO on site **a**. Three structures (1-3) were obtained as local minimum structures (Table 1). The CO and O ligands are adsorbed close to each

Table 1. Optimized Structures of  $Co_7(CO)O^-$  with C–O Bond Lengths (Å)

|                                     | 1      | 2      | 3      |
|-------------------------------------|--------|--------|--------|
| Structure                           | 1.17   | 1.17   | 1.17   |
| AE (eV) <sup>a</sup>                | -1.18  | -0.71  | -0.58  |
| $v_{\rm CO}  (\rm cm^{-1})^{\rm b}$ | 1931.2 | 1904.1 | 1904.1 |
| $\Delta Q_{\rm CO}(e)^{c}$          | -0.09  | -0.04  | -0.06  |
| $\Delta Q_{\rm O}(e)^{\rm d}$       | -1.19  | -1.23  | -1.21  |
| VDE (eV) <sup>e</sup>               | 1.67   | 1.45   | 1.66   |

<sup>*a*</sup>AE: adsorption energy of CO and O. <sup>*b*</sup> $\nu_{CO}$ : frequency of stretching of CO. <sup>*c*</sup> $\Delta Q_{CO}$ : NBO charge on CO. <sup>*d*</sup> $\Delta Q_{O}$ : NBO charge on O. <sup>*e*</sup>VDE: vertical detachment energy.

other on the pentagonal bipyramid core in the most stable structure (1). The pentagonal bipyramid motif was converted to a capped octahedron in structure 2 due to its comparable stability (Figure 5). The CO stretching frequencies of 1-3 were red-shifted with respect to that of free CO obtained at the same level of calculation (2158 cm<sup>-1</sup>) and with respect to the experimentally determined value (2170 cm<sup>-1</sup>) because of  $\pi$ -back-donation to the CO ligand.

For comparison, we also studied the structure of  $Co_7CO_2^{-}$ , where CO<sub>2</sub> is adsorbed nondissociatively. Three coordination configurations were considered for CO<sub>2</sub>: (A) bidentate coordination via C and O atoms, (B) bidentate coordination via two O atoms, and (C) monodentate coordination via C atom. Three structures 4-6 were obtained as local minimum structures, as shown in Table 2. For all the structures, the AE values of  $CO_2$  to  $Co_7^-$  are in the range of -0.5 to -0.6 eV. In the most stable structure 4, the C and O atoms of  $CO_2$  are bonded to Co atoms at the vertex and periphery sites of Co<sub>7</sub>-. The other two structures 5 and 6 have comparable stabilities. In structure 5, the C and O atoms of  $CO_2$  are bonded to a single Co atom at the periphery site of  $Co_7^-$ . In structure 6, two O atoms of CO<sub>2</sub> are bonded to adjacent Co atoms at periphery sites of  $\text{Co}_7^-$ . Although the structures of the  $\text{Co}_7$  moiety of 4-6remained similar to that of free  $Co_7^-$ , the structures of the  $CO_2$ adsorbates in 4-6 are significantly different from that of free CO<sub>2</sub>. First, the C–O bonds are lengthened from 1.17 Å to 1.21-1.29 Å upon adsorption onto Co<sub>7</sub><sup>-</sup>. This suggests that the C–O bonds of  $CO_2$  are weakened upon adsorption onto  $Co_7^-$ . Second, the  $CO_2$  adsorbates in **4–6** are bent with OCO angles of 129-138°. This structural change suggests that the CO<sub>2</sub> adsorbates are negatively charged, as reported on the metal surface.<sup>9,34,35</sup> Actually, the NBO charges on  $CO_2$  in 4–6 are in the range of -0.57 to -0.78 e, as shown in Table 2. These results indicate partial electron transfer from Co7- to the Table 2. Optimized Structures of  $Co_7 CO_2^-$  with C–O Bond Lengths (Å) and OCO Angles (deg) within  $CO_2$ 



<sup>*a*</sup>CC: coordination configuration. <sup>*b*</sup>AE: adsorption energy of CO<sub>2</sub>. <sup>*c*</sup> $\nu_{SS}$ : frequency of symmetric stretch of CO<sub>2</sub>. <sup>*d*</sup> $\nu_{ASS}$ : frequency of antisymmetric stretch of CO<sub>2</sub>. <sup>*e*</sup> $\Delta Q_{CO_2}$ : NBO charge on CO<sub>2</sub>. <sup>*f*</sup>VDE: vertical detachment energy.

antibonding orbital of  $CO_2$  and thus weakening of the C–O bonds of  $CO_2$ .

Qualitatively, the  $Co_7(CO)O^-$  structures (1–3) are more stable than the  $Co_7CO_2^-$  structures (4–6). In particular, structure 1, the most stable isomer of  $Co_7(CO)O^-$ , is more stable than structure 4, the most stable isomer of  $Co_7CO_2^-$ , by 0.56 eV. This clearly shows that dissociative adsorption of  $CO_2$ to  $Co_7^-$  is energetically more favorable. To aid the assignment of the spectra in Figure 3a, the vibrational spectra of 1–6 were calculated and are summarized in Figure 6. Structures 1–3



Figure 6. Infrared spectra in the range of  $1000-2000 \text{ cm}^{-1}$  calculated for the isomer structures 1-6.

exhibit a single peak in the range of  $1900-1930 \text{ cm}^{-1}$ . The vibrational frequencies for the antisymmetric stretching mode of the adsorbed CO<sub>2</sub> of **4**-**6** were in the range of  $1610-1790 \text{ cm}^{-1}$  and are significantly red-shifted with respect to the experimentally determined value for free CO<sub>2</sub> (2349 cm<sup>-1</sup>). In addition, structures **4**-**6** exhibit the symmetric stretching mode of the CO<sub>2</sub> ligand in the range of  $1120-1260 \text{ cm}^{-1}$  and the bending mode at ~700 cm<sup>-1</sup>. The symmetric and antisymmetric stretching modes of **4**-**6** have comparable IR intensities, meaning that two peaks should be observed in the investigated range if Co<sub>7</sub>CO<sub>2</sub><sup>-</sup> is formed. Obviously, comparison of the IR

spectra of  $\text{Co}_7\text{CO}_2^-$  that were experimentally observed (Figure 3a) and calculated (Figure 6) excludes the presence of a dominant fraction of nondissociative adsorption of  $\text{CO}_2$  on  $\text{Co}_n^-$ . Although the assignment of the IR spectrum (Figure 3) to a specific isomer is beyond the scope of this study, it is safe to conclude that  $\text{CO}_2$  is dissociatively adsorbed to the  $\text{Co}_n^-$  cluster. The dissociative adsorption of  $\text{CO}_2$  onto  $\text{Co}_n^-$  clusters ( $n \ge 7$ ) is in sharp contrast to the nondissociative adsorption onto the Co monomer anion to form  $[\text{CO}_2\text{CoCO}_2]^{-1.6}$  However, for comparison, dissociation of  $\text{CO}_2$  by Ni cluster anions under thermal conditions had been suggested from the observation of Ni oxide clusters as products.<sup>43</sup>

**3.4.** Photoelectron Spectroscopy of  $Co_nCO_2^-$ . The electronic structures of  $Co_nCO_2^-$  were probed by PES using a photon energy of 3.49 eV. The black and red curves in Figure 7



**Figure 7.** Photoelectron spectra of  $\text{Co}_n^-$  (black lines) and  $\text{Co}_n\text{CO}_2^-$  (red lines) with n = (a) 7, (b) 8, and (c) 9.

show the photoelectron spectra of  $Co_n^-$  and  $Co_nCO_2^-$ , respectively (n = 7-9). The photoelectron spectra of  $Co_n^{-1}$  agree well with previously reported spectra, <sup>23-25</sup> although the energy resolution in previous studies was higher than that in the present study. The spectra of  $Co_n CO_2^-$  have featureless profiles and are significantly blue-shifted as compared to those of  $Co_n^{-}$ . To gain more quantitative information on the effect of  $CO_2$ adsorption on the electronic structure, the electron affinities (EAs) of Co<sub>n</sub> and Co<sub>n</sub>CO<sub>2</sub> were estimated from the spectral onset by linear extrapolation.<sup>23–25,44</sup> Figure 7 shows that the EAs for  $Co_n CO_2$  are larger by 0.2–0.4 eV than those for the corresponding Co<sub>n</sub>. The increase in the electron binding energy upon CO<sub>2</sub> adsorption was supported by theoretical calculations: the VDE calculated for  $Co_7(CO)O^-$  (1) (1.67 eV, Table 1) was larger than that for  $\text{Co}_7^-$  (1.42 eV) by 0.25 eV. It was demonstrated by PES that the EAs of  $Co_n O$  (n = 7-9) were larger than those of  $Co_n$  by ~0.2 eV.<sup>44</sup> Thus, the increase of the EAs for  $Co_n CO_2$  is ascribed to the electron transfer from the Co<sub>n</sub> cluster to the O atom as evidenced by NBO analysis (Table 1). However, shifts of the EAs for  $Co_{\mu}CO_{2}$  are slightly larger than those for Co.O.44 The stabilization of the frontier orbitals of  $Co_nO^-$  and CO via bonding interaction may contribute to these additional increments.<sup>3</sup>

#### 4. CONCLUSIONS

Mass spectrometric studies showed that  $\operatorname{Co}_n^-$  clusters of  $n \ge 7$  react with  $\operatorname{CO}_2$ . IR spectroscopy and DFT calculations revealed that  $\operatorname{CO}_2$  is dissociatively adsorbed on the  $\operatorname{Co}_n^-$  clusters, in

sharp contrast to its nondissociative adsorption on the Co atomic anions. Photoelectron spectra of  $\text{Co}_n\text{CO}_2^-$  (n = 7-9) support electron transfer from the Co clusters to the CO and O ligands. The present study demonstrates that  $\text{Co}_n^-$  is an attractive candidate for catalyzing CO<sub>2</sub> conversion.

### AUTHOR INFORMATION

#### **Corresponding Authors**

\*E-mail: fielicke@physik.tu-berlin.de.

\*E-mail: tsukuda@chem.s.u-tokyo.ac.jp.

#### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

We thank Prof. Hiroyuki Yoshida (Chiba University) for fruitful suggestion for the cluster production. This research was financially supported by the Elements Strategy Initiative for Catalysis and Batteries (ESICB) and by a Grant-in-Aid for Scientific Research (No. 26248003) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. Theoretical calculations were partly performed on the supercomputers of the Research Center for Computational Science, Okazaki, Japan.

## REFERENCES

(1) Waugh, K. C. Methanol Synthesis. *Catal. Today* **1992**, *15*, 51–75. (2) Yu, K. M. K.; Curcic, I.; Gabriel, J.; Tsang, S. C. E. Recent Advances in  $CO_2$  Capture and Utilization. *ChemSusChem* **2008**, *1*, 893–899.

(3) Fang, S.; Fujimoto, K. Direct Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol Catalyzed by Base. *Appl. Catal., A* **1996**, *142*, L1–L3.

(4) Fujita, S.; Bhanage, B. M.; Ikushima, Y.; Arai, M. Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol in the Presence of Methyl Iodide and Base Catalysts under Mild Conditions: Effect of Reaction Conditions and Reaction Mechanism. *Green Chem.* **2001**, *3*, 87–91.

(5) Wu, Y.; Liu, G. Organocatalyzed Cycloaddition of Carbon Dioxide to Aziridines. *Tetrahedron Lett.* **2011**, *52*, 6450–6452.

(6) Wei, W.; Jinlong, G. Methanation of Carbon Dioxide; An Overview. *Front. Chem. Sci. Eng.* **2011**, *5*, 2–10.

(7) Laitar, D. S.; Müller, P.; Sadighi, J. P. Efficient Homogeneous Catalysis in the Reduction of  $CO_2$  to CO. J. Am. Chem. Soc. **2005**, 127, 17196–17197.

(8) Zhao, H.; Lin, Z.; Marder, T. B. Density Functional Theory Studies on the Mechanism of the Reduction of  $CO_2$  to CO Catalyzed by Copper (I) Boryl Complexes. J. Am. Chem. Soc. **2006**, 128, 15637–15643.

(9) Freund, H.-J.; Roberts, M. W. Surface Chemistry of Carbon Dioxide. Surf. Sci. Rep. 1996, 25, 225–273.

(10) Wambach, J.; Illing, G.; Freund, H.-J. CO<sub>2</sub> Activation and Reaction with Hydrogen on Ni(110): Formate Formation. *Chem. Phys. Lett.* **1991**, *184*, 239–244.

(11) Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. *J. Am. Chem. Soc.* **1999**, *121*, 4526–4527.

(12) Boese, A. D.; Schneider, H.; Glöß, A. N.; Weber, J. M. The Infrared Spectrum of  $Au^{-\bullet}CO_2$ . J. Chem. Phys. 2005, 122, 154301.

(13) Knurr, B. J.; Weber, J. M. Solvent-Driven Reductive Activation of Carbon Dioxide by Gold Anions. J. Am. Chem. Soc. 2012, 134, 18804–18808.

(14) Knurr, B. J.; Weber, J. M. Solvent-Mediated Reduction of Carbon Dioxide in Anionic Complexes with Silver Atoms. J. Phys. Chem. A 2013, 117, 10764–10771.

(15) Knurr, B. J.; Weber, J. M. Structural Diversity of Copper $-CO_2$ Complexes: Infrared Spectra and Structures of  $[Cu(CO_2)_n]^-$  Clusters. *J. Phys. Chem. A* **2014**, *118*, 10246–10251.

(16) Knurr, B. J.; Weber, J. M. Infrared Spectra and Structures of Anionic Complexes of Cobalt with Carbon Dioxide Ligands. J. Phys. Chem. A 2014, 118, 4056–4062.

(17) Knurr, B. J.; Weber, J. M. Interaction of Nickel with Carbon Dioxide in  $[Ni(CO_2)_n]^-$  Clusters Studied by Infrared Spectroscopy. J. Phys. Chem. A **2014**, 118, 8753–8757.

(18) Zhang, X.; Lim, E.; Kim, S. K.; Bowen, K. H. Photoelectron Spectroscopic and Computational Study of  $(M-CO_2)^-$  Anions. M = Cu, Ag, Au. J. Chem. Phys. **2015**, 143, 174305.

(19) Graham, J. D.; Buytendyk, A. M.; Zhang, X.; Kim, S. K.; Bowen, K. H. Carbon Dioxide is Tightly Bound in the  $[Co(Pyridine) (CO_2)]^-$ Anionic Complex. J. Chem. Phys. **2015**, 143, 184315.

(20) Menges, F. S.; Craig, S. M.; Tötsch, N.; Bloomfield, A.; Ghosh, S.; Krüger, H.-J.; Johnson, M. A. Capture of  $CO_2$  by a Cationic Nickel(I) Complex in the Gas Phase and Characterization of the Bound, Activated  $CO_2$  Molecule by Cryogenic Ion Vibrational Predissociation Spectroscopy. *Angew. Chem., Int. Ed.* **2016**, *55*, 1282–1285.

(21) Budiman, A. W.; Song, S.-H.; Chang, T.-S.; Shin, C.-H.; Choi, M.-J. Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development. *Catal. Surv. Asia* **2012**, *16*, 183–197. (22) Watanabe, T.; Tsukuda, T. Structural Characterization of Unprecedented Al<sub>14</sub>O<sup>-</sup> and Al<sub>15</sub>O<sub>2</sub><sup>-</sup>; Photoelectron Spectroscopy and Density Functional Calculations. *J. Phys. Chem. C* **2013**, *117*, 6664–6668.

(23) Yoshida, H.; Terasaki, A.; Kobayashi, K.; Tsukada, M.; Kondow, T. Spin-Polarized Electronic Structure of Cobalt Cluster Anions Studied by Photoelectron Spectroscopy. *J. Chem. Phys.* **1995**, *102*, 5960–5965.

(24) Yoshida, K.; Terasaki, A.; Kondow, T. Photoelectron Spectroscopy of  $Co_n^-$  and Product Anions of  $Co_n^-$  with  $O_2$  and  $N_2$ . Surf. Rev. Lett. **1996**, 03, 667–670.

(25) Liu, S.-R.; Zhai, H.-J.; Wang, L.-S. Electronic and Structural Evolution of  $Co_n$  Clusters (n = 1-108) by Photoelectron Spectroscopy. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2001**, *64*, 153402.

(26) Schöllkopf, W.; Gewinner, S.; Erlebach, W.; Junkes, H.; Liedke, A.; Meijer, G.; Paarmann, A.; von Helden, G.; Bluem, H.; Dowell, D.; et al. The New IR FEL Facility at the Fritz-Haber-Institut in Berlin. *Proceedings of the 36th Free Electron Laser Conference*, Basel, Switzerland, August 25–29, 2014; pp 629–634.

(27) Schöllkopf, W.; Gewinner, S.; Junkes, H.; Paarmann, A.; von Helden, G.; Bluem, H.; Todd, A. M. M. The New IR and THz FEL Facility at the Fritz Haber Institute in Berlin. In *Proceedings of SPIE Volume 9512: Advances in X-ray Free-Electron Lasers Instrumentation III*; Biedron, S. G., Ed; SPIE: Bellingham, WA, 2015, 95121L.

(28) Truong, N. X.; Haertelt, M.; Jaeger, B.; Gewinner, S.; Schöllkopf, W.; Fielicke, A.; Dopfer, O. Characterization of Neutral Boron-Silicon Clusters Using Infrared Spectroscopy: The Case of  $Si_6B$ . *Int. J. Mass Spectrom.* **2016**, 395, 1–6.

(29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. *Gaussian 09*, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.

(30) Hales, D. A.; Su, C.-X.; Lian, L.; Armentrout, P. B. Collision-Induced Dissociation of  $Co_n^+$  (n = 2-18) with Xe: Bond Energies of Cationic and Neutral Cobalt Clusters, Dissociation Pathways, and Structures. J. Chem. Phys. **1994**, 100, 1049–1057.

(31) Datta, M. S.; Kabir, M.; Ganguly, B.; Sanyal, B.; Saha-Dasgupta, T.; Mookerjee, A. Structure, Bonding, and Magnetism of Cobalt Clusters from First-Principles Calculations. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2007**, *76*, 014429.

(32) Kapiloff, E.; Ervin, K. M. Reactions of Cobalt Cluster Anions with Oxygen, Nitrogen, and Carbon Monoxide. *J. Phys. Chem. A* **1997**, *101*, 8460–8469.

(33) Balteanu, I.; Achatz, U.; Balaj, O. P.; Fox, B. S.; Beyer, M. K.; Bondybey, V. E. The Effect of Charge upon CO-Adsorption by Ionic Group 5 and Group 9 Transition Metal Clusters. *Int. J. Mass Spectrom.* 2003, 229, 61–65.

(34) Wang, S.-G.; Liao, X.-Y.; Cao, D.-B.; Huo, C.-F.; Li, Y.-W.; Wang, J.; Jiao, H. Factors Controlling the Interaction of CO<sub>2</sub> with Transition Metal Surfaces. *J. Phys. Chem. C* **2007**, *111*, 16934–16940.

(35) Ko, J.; Kim, B.-K.; Han, J. W. Density Functional Theory Study for Catalytic Activation and Dissociation of  $CO_2$  on Bimetallic Alloy Surfaces. J. Phys. Chem. C 2016, 120, 3438–3447.

(36) Liu, S.-R.; Zhai, H.-J.; Wang, L.-S. *s-d* Hybridization and Evolution of the Electronic and Magnetic Properties in Small Co and Ni Clusters. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2002**, *65*, 113401.

(37) Fielicke, A.; von Helden, G.; Meijer, G.; Pedersen, D. B.; Simard, B.; Rayner, D. M. Size and Charge State Effects on the Binding of CO to Late Transition Metal Clusters. *J. Chem. Phys.* **2006**, *124*, 194305.

(38) Hamilton, S. M.; Hopkins, W. S.; Harding, D. J.; Walsh, T. R.; Gruene, P.; Haertelt, M.; Fielicke, A.; Meijer, G.; Mackenzie, S. R. Infrared Induced Reactivity on Surface of Isolated Size-Selected Clusters: Dissociation of N<sub>2</sub>O on Rhodium Clusters. *J. Am. Chem. Soc.* **2010**, *132*, 1448–1449.

(39) Hamilton, S. M.; Hopkins, W. S.; Harding, D. J.; Walsh, T. R.; Haertelt, M.; Kerpal, C.; Gruene, P.; Meijer, G.; Fielicke, A.; Mackenzie, S. R. Infrared-Induced Reactivity of  $N_2O$  on Small Gas-Phase Rhodium Clusters. J. Phys. Chem. A **2011**, 115, 2489–2497.

(40) Rodríguez-López, J. L.; Aguilera-Granja, F.; Michaelian, K.; Vega, A. Structure and Magnetism of Cobalt Clusters. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2003**, *67*, 174413.

(41) Ma, Q.-M.; Xie, Z.; Wang, J.; Liu, Y.; Li, Y.-C. Structures, Stabilities and Magnetic Properties of Small Co Clusters. *Phys. Lett. A* **2006**, 358, 289–296.

(42) Gehrke, R.; Gruene, P.; Fielicke, A.; Meijer, G.; Reuter, K. Nature of Ar Bonding to Small  $Co_n^+$  Clusters and its Effect on the Structure Determination by Far-Infrared Absorption Spectroscopy. *J. Chem. Phys.* **2009**, 130, 034306.

(43) Hintz, P. A.; Ervin, K. M. Chemisorption and Oxidation Reactions of Nickel Group Cluster Anions with  $N_2$ ,  $O_2$ ,  $CO_2$ , and  $N_2O$ . J. Chem. Phys. **1995**, 103, 7897–7906.

(44) Pramann, A.; Koyasu, K.; Nakajima, A.; Kaya, K. Photoelectron Spectroscopy of Cobalt Oxide Cluster Anions. *J. Phys. Chem. A* **2002**, *106*, 4891–4896.